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A B S T R A C T   

Public understanding of home energy use is rife with biases and misunderstandings that can stymie the adoption 
of efficient technologies and conservation practices. Studying how energy experts make energy-related judg
ments can help design decision support tools to correct misperceptions held by novices. Here we conduct in
terviews with electrical engineers (n = 10), physicists (n = 10), and energy analysts (n = 10) to document expert 
judgments about energy use and to identify their cognitive shortcuts (heuristics) for household energy decision 
making. Performance on an energy estimation task confirmed that energy experts have more accurate estimates 
of home energy use than novices. We document 24 unique expert heuristics related to device functions, com
ponents, and observable cues used by experts while making energy-use judgments. A follow-up survey with the 
experts indicated that these expert heuristics are generally more accurate than novice heuristics. The library of 
heuristics created in this study can be useful additions to education programs designed to improve public energy 
literacy and decision making.   

1. Introduction 

Residential end-use accounted for 38% of electricity sales in the 
United States in 2019 [1]. Efforts to mitigate climate change, among 
other causes, stand to substantially benefit from curbing electricity use 
through greater uptake of efficiency and conservation measures at the 
household level [2,3]. However, productive engagement with the public 
about household energy use is complicated by challenges related to 
misperceptions of effective ways to conserve energy in our lives. 

Public understanding of energy use is rife with systematic and 
problematic biases. Commonly, people do not know the difference be
tween energy and power [4] and do not know what are the most 
effective changes they can make to decrease their household energy use. 
For example, when asked what is the single most effective thing they can 
do to decrease energy use, participants’ modal response has been 
“turning off the light” since the 1980s [5–7]. Although turning off the 
light is easy to remember, it is not the most effective action one can take 
to decrease their energy footprint [2]. Turning off the lights exemplifies 
the stark differences between public or “folk” understanding and expert 
analysis of effective ways of conserving energy use [2]. 

Although there are many tools that exist to teach people about what 

are effective energy conservation strategies, they come with varying 
degrees of difficulty in accessibility and use. For example, there are high 
search costs associated with finding an efficient home or efficient ap
pliances [8]. Programs like Energy Star use simple decision architecture 
(employing effective ways of presenting information and choices) [9,10] 
to identify the most efficient appliances in class leads consumers to save 
energy and money. A complementary approach to improving public 
understanding of energy use lies in correcting the perceptions and 
mental models people use to make decisions about energy, and testing 
whether that leads to energy savings. 

One key element of decision making is the use of heuristics, simple 
rules and principles used to make judgments without deliberate and 
elaborate analytical reasoning [11]. While heuristic processes can often 
yield valid, “good enough” results [12], they can also lead to biased 
assessments [13]. (These competing perspectives on heuristics are 
sometimes referenced as the “heuristics-and-biases” paradigm associ
ated with bounded rationality versus the “fast-and-frugal” paradigm 
highlighting the adaptive nature of heuristic use [14].) Aiding cognitive 
efficiency, heuristics guide our attention, serving to sort cues and 
distinguish between critical and non-critical information. 

When it comes to novice energy perceptions (i.e., how people 

* Corresponding author. 
E-mail address: joseph.kantenbacher@usd.edu (J. Kantenbacher).   

1 Present address: University of South Dakota, Department of Sustainability & Environment, 414 E. Clark St., Vermillion, SD 57069, USA. 

Contents lists available at ScienceDirect 

Energy Research & Social Science 

journal homepage: www.elsevier.com/locate/erss 

https://doi.org/10.1016/j.erss.2021.101911 
Received 24 July 2020; Received in revised form 14 November 2020; Accepted 4 January 2021   

mailto:joseph.kantenbacher@usd.edu
www.sciencedirect.com/science/journal/22146296
https://www.elsevier.com/locate/erss
https://doi.org/10.1016/j.erss.2021.101911
https://doi.org/10.1016/j.erss.2021.101911
https://doi.org/10.1016/j.erss.2021.101911
http://crossmark.crossref.org/dialog/?doi=10.1016/j.erss.2021.101911&domain=pdf


Energy Research & Social Science 73 (2021) 101911

2

without professional experience or expertise with energy understand the 
topic of energy use), people tend to pay attention to cues that may not be 
indicative of the amount of work being done or energy being used by the 
device. Past research found that undergraduate participants grouped 
appliances based on functionality and size but not in terms of energy use; 
some large appliances were perceived to use more energy even though 
actual energy use was low [15]. Other work indicates that size is a 
primary driver of novice energy estimates [16] and that the frequency 
with which people interact with the device is used as a cue to indicate 
how much energy it uses [17]. 

To create a comprehensive catalogue of novice energy heuristics, van 
den Broek and Walker [18] asked undergraduate participants to work in 
groups to rank order the energy use of items on a list of household ap
pliances. Through thematic analysis of these group discussions, nine 
heuristic themes and 24 separate heuristics were identified. The most 
common heuristic themes related to comparisons between devices (e.g., 
devices with related functions use similar amounts of energy, as in DVDs 
players and televisions), the time-based aspects of device use (e.g., the 
faster a device completes a task, the more total energy it uses), as in a 
rapid-boil kettle, and the physical features of devices (e.g., the number 
of components a device contains, as in a computer with added drives and 
ports). In terms of individual heuristics, the most frequently observed 
heuristics focused on duration of use, device category, and heat pro
duction. Subsequently the authors incorporated one of the more 
frequently evoked heuristics, “a good way to estimate how much energy 
a household device uses is to think about how much heat it produces”, 
into educational materials, and was shown to improve performance by a 
new study group on an energy-use rank-ordering task [18]. 

Folk cues like frequency of use can lead to inaccurate estimates of 
energy use [17]. In addition to inaccurate estimates, people also have 
incorrect theories for how basic energy systems work. For example, 
people commonly use valve-theory to explain how thermostats work, i. 
e., the thermostat controls the amount of heat, rather than feedback 
theory where the thermostat senses the temperature and turns the 
furnace on or off to maintain a given temperature [19]. 

We use the term cultural heuristic to indicate decision rules that are 
salient in our culture but may not be the best or most accurate rules to 
follow. “Turning off the lights” is a sticky and salient heuristic and is a 
good example of an inaccurate cultural heuristic for the most effective 
action to decrease energy use. Cultural heuristics are different from 
natural heuristics such as anchoring and insufficient adjustment [13], 
which are a function of the way our mind understands and interprets 
data (psychophysics). 

Cultural heuristics are also distinct from expert heuristics, which are 
rules that experts use to distinguish between relevant and irrelevant 
information and to navigate difficult decision landscapes. Subject- 
matter experts distinguish themselves from novices by virtue of skills 
acquired from collecting subject-specific knowledge and practices over 
the course of many years of academic and professional experience 
[20–22]. Experts develop a range of cognitive benefits and capacities 
that improve performance on relevant tasks [23], including more ac
curate mental representations of domain-specific tasks and protocols 
[24] and better problem-solving strategies and strategy selection pro
cesses [25]. Thus within the domain of energy, an expert would be 
considered a person with extensive educational and professional expe
rience with energy and energy-adjacent subjects. 

Across a wide variety of domains, differences in judgments and be
haviors between experts and novices often stem from differences in 
perception. In many cases, these differences in perception themselves 
turn on the expert’s deployment of categorical thinking that capture 
important domain-relevant principles. Novice judgments are instead 
often driven by surface similarities and potentially irrelevant relation
ships or cues [24,26,27]. We posit that novice energy estimators are 
often misled by surface similarities and simplistic heuristics in making 
energy estimates, while experts are guided by deeper, more principle- 
based causal explanations. Hence, it can be expected that expert 

heuristics, acquired, tested, and used over years of experience, would be 
more accurate and effective than novice heuristics in making energy- 
related judgments. An example of an expert heuristic in the energy 
space is “large appliances that primarily heat or cool things use a lot 
more energy than people think” [28]. Participants who were provided 
this expert heuristic did better than the control condition in estimating 
actual energy use by appliances [28]. 

It is important to note here that heuristics of all types by their very 
nature are cognitive shortcuts that help people navigate complex deci
sion making or judgment tasks. Even expert heuristics can lead to errors 
in judgment. For the example above, there are some large appliances 
that heat or cool but use relatively little energy compared to appliances 
that do not (e.g., a refrigerator – a large appliance that cools – is rated at 
~ 360 W whereas a vacuum cleaner – a smaller appliance that sucks air – 
is rated at ~ 800 W). Although heuristics are not perfectly applicable in 
every situation, thoughtfully developed heuristics can balance 
simplicity (easy of use) and performance (they improve judgment ac
curacy) such that their overall impact is to improve decision making. 

All expertise is not the same. An important component of the domain 
of energy use is the heterogeneity of relevant expertise: some experts 
build and repair actual devices (electrical engineers), others (physicists) 
deal with electricity and magnetism as general phenomena, still others 
(energy analysts or technical subject matter experts) must combine 
understandings of electrical devices and their principles with an un
derstanding of usage in context. Thus, to catalog potentially useful 
expert heuristics, it is critical to investigate the knowledge and decision 
processes of multiple expert groups, as different experts may focus on 
different features of energy and energy use. 

Here we aim to create a library of expert energy heuristics for the 
home and aim to answer three research questions: (1) Do experts in 
energy-related fields have more accurate estimates of home energy use 
than novices? (2) If so, what are some of the heuristics they use to make 
their energy estimates quickly without using back-of-envelope calcula
tions or basic memory recall? (3) How accurate do the experts find their 
own heuristics relative to those associated with novices? 

2. Methods 

2.1. Recruitment 

Expertise relevant to the domain of home energy use can be quite 
diverse, and defining expertise is not an exact science. Some people 
might deal with electricity and magnetism as a general, conceptual 
phenomenon. Others design electrical devices, while still others 
combine technical knowledge of devices with an understanding of actual 
usage in the home. To cover each of these three prospective types of 
energy-relevant expertise, ten experts each were recruited from three 
professional categories: electrical engineers, physicists, and energy 
analysts. 

Markers of expertise include degree of education and amount of 
experience [20,29]. Experts in the electrical engineering and physics 
were recruited from their respective academic departments of several 
colleges and universities located in the American Midwest and South
east. Each of these experts held a PhD in their field of expertise and 19 
out of 20 were tenured professors. Of the 20 experts in these two groups, 
the amount of professional (post-education) experience ranged from 8 to 
53 years, with a mean length of professional experience of 29 years. 

Experts qualified as an energy analyst when their major professional 
activity focused on energy use in the home. Energy analysts were 
identified through web searches and the authors’ knowledge of the field. 
Energy analysts worked in research institutions, energy non-profits, 
energy consultancies, and other private-sector groups. As a group, en
ergy analysts had 10 to 48 years of professional experience (mean 24 
years), and all 10 experts held graduate degrees. 

Only three of the 30 experts in our sample were female, and the 
average age of our participants was 54 years. 
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To gain a better understanding of how the participant viewed their 
own expertise, we asked participants to describe whether they thought 
their expertise in their field was relevant for estimating energy use of 
home appliances. Experts rated the relevance of their expertise on a 
Likert scale ranging from 1 (“not at all relevant”) to 7 (“highly rele
vant”). Among electrical engineers, 40% rated their expertise as 
“somewhat relevant” and 30% rated their expertise as “mostly relevant.” 
Among physicists, 30% rated their expertise as “somewhat relevant” and 
20% rated their expertise as “mostly relevant.” Among energy analysts, 
40% rated their expertise as “somewhat relevant” and 30% rated their 
expertise as “mostly relevant.” No expert deemed their expertise to be 
“highly relevant” to the task of estimating appliance energy use. 

Our experts also addressed how often they engage with members of 
the general public on issues related to personal energy use. For this 
question, 20% of electrical engineers, 0% of physicists, and 50% of en
ergy analysts reported speaking to the public monthly, weekly, or daily. 

Finally, 3% of our sample had a professional engineer certification, 
10% had received training as an electrician, and none was certified to 
conduct home energy audits. 

Across all groups, participants were recruited via email. Prospective 
recruits received at least one follow-up email message and some 
received follow-up visitations at their publicly listed office. All partici
pants were offered $20 for their participation. Of all participants, 57% 
accepted this payment. Our total sample is 30 participants. The sample 
size of our study was not based on the saturation of ideas but rather for 
an exploratory study to extract and build a first of its kind “heuristics 
library” for home energy use. Henceforth, we refer to our participants as 
experts. 

2.2. Procedure 

Data on expert thinking was collected between March 2019 and 
August of 2019. Where possible, interviews were conducted in person. 
When distance or other constraints made in-person interviews not 
feasible (for 15 experts), interviews were conducted over the phone or 
via video chat, with quantitative data being collected through an online 
survey platform. 

Each session had two principal components: first a choice task and 
second an appliance estimation task. (This order reverses the presenta
tion of items in previous work [28].) Experts were also asked a series of 
questions about energy use in their personal and professional lives as 
well as a set of questions about their background and field of expertise. 

Qualitative data was coded and analyzed using NVivo (v12) and 
quantitative data was analyzed using R (v3.5.2). Analysis of variance 
was used to assess differences in performance between expert categories. 
T-tests were conducted to assess the performance of experts and their 
heuristics relative to previously established novice baselines [18,28]. 
Pearson’s correlation coefficient was used to assess the relationship 
between measures of expert performance and data about the experts 
themselves. For all statistical analyses, a p-value of 0.05 was used as the 
threshold for significance. 

2.2.1. Choice task 
In the choice task, experts were presented with nine sets of two or 

three common household devices. For example, one set was a choice 
between a window air conditioning unit and an electric oven. For each 
set, experts were asked to state which of the presented devices would use 
less energy than the other(s) given that all devices were run for the same 
length of time. In total, 24 devices were used across the nine choice 
tasks, covering the major categories of domestic electricity use: heating 
and cooling, water heating, small and large appliances, lighting, and 
electronics. 

The choice task was paired with protocol analysis, wherein research 
participants are asked to think aloud as they perform a task, thereby 
providing instantaneous and unfiltered insight into the cognition asso
ciated with completing the task [30]. In this case, experts were asked to 

verbalize their thinking and thought processes to the best of their abil
ities while they selected the device that used the least energy in each 
choice set. Experts were given practice exercises to accustom them to 
thinking aloud [30]. When, in the middle of a given choice task set, an 
expert spent a moderate amount of time without speaking, they were 
given a gentle prompt to continue vocalizing their thoughts. 

2.2.2. Appliance estimation 
Following the choice task, experts were asked to provide their esti

mates of the energy use of 17 household devices. To provide a concrete 
reference point for quantifying their judgments about energy use, ex
perts were told: “A standard incandescent light bulb uses about 100 units 
of energy in one hour. When you are asked to estimate units of energy, 
please compare each appliance to this light bulb. Think about whether 
each appliance below uses less energy or more energy than this light 
bulb. Please use this number to help you make your estimates.” (The 
term “unit” was used rather than the more technical Watt-hour to be 
consistent with previous research on energy estimation by the general 
public, which tends to be less fluent with units of energy.) Based on these 
instructions, experts were then asked to estimate the units of energy 
used by these 17 devices when they are in use for one hour. To compare 
expert performance with that of energy “novices,” we examined the 
baseline data of the estimation task in previous work [28]. 

Data collection ended with a set of questions to collect information 
about the experts’ sense of numeracy (drawing two items from the 
Subjective Numeracy Scale [31]), educational and professional back
grounds, perception of the applicability of their expertise to assessing 
energy use, and demographic profile. 

2.3. Coding the choice task 

To extract the list of heuristics employed by experts during the choice 
task, the verbal reports made by the experts were transcribed and 
analyzed. The first layer of analysis entailed developing a coding scheme 
to categorize the content of the verbal reports. A codebook was devel
oped to sort the information used by the experts into primary and sec
ondary categories. Primary codes were developed for the three general 
content areas of the expert interviews: references to (1) observable cues 
about energy use, (2) device functions, and (3) device components. (A 
fourth primary category was created to catch comments that did not fall 
in the areas of the main primary categories.) Each primary code was 
disaggregated into several secondary codes, each of which refers to a 
more detailed aspect of the primary code’s general theme. For example, 
the “Observable Cues” primary code family contained eight secondary 
codes, including “hot to touch,” “dims lights/trips circuits,” and “thick 
cord.” 

This codebook was drafted by a single researcher then modified 
based on four rounds of independent coding by two coders. Each round 
involved two coders using the codebook to code a single, randomly 
selected interview transcript. Following the first two rounds of coding, 
qualitative discussions of differences between the two coders guided 
revisions to the codebook. After the third and fourth rounds of coding, 
unweighted Cohen’s kappa (κ) values were calculated to quantify 
intercoder agreement [32]. These values were 0.83 and 0.85, respec
tively, which are generally considered to indicate fairly strong agree
ment [33]. Following these four rounds of codebook revision, a final 
version of the codebook was established. (See Supplementary Table 1.) 

Two further rounds of joint coding were performed to assess whether 
there was sufficient agreement between two coders to justify using a 
single coder for the entirety of the interview data. In each round, three 
randomly selected interviews – one from each expert group – were 
independently coded by two coders. The threshold of κ = 0.8 was un
derstood as sufficient for single coding [33]. The κ value for intercoder 
agreement level for the first round of coding was 0.94. A second round of 
coding with the same codebook and three new transcripts was 
completed to confirm acceptable intercoder reliability had been 
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achieved and was replicable (κ = 0.80). Based on the high level of 
intercoder reliability, a single coder was used to code all the remaining 
interviews. 

After the expert interviews were coded according to the list of sec
ondary codes, a second layer of analysis extracted a set of heuristics from 
the secondary codes. This extraction was performed by a single 
researcher. In this process, all pieces of text with a given secondary code 
were first read for whether they stated a rule related to energy use and 
then assessed for thematic similarities across the texts. In each secondary 
code group, coded quotes were sorted into collections that describe a 
similar rule. 

The secondary code “hot to touch,” for example, was applied 28 
times across 19 separate experts. As these 28 excerpts were read, they 
were grouped together when they expressed similar ideas. Within “hot 
to touch,” the following quotes were two among several that were seen 

as conveying the same idea: “I know that the light bulbs in the digital 
projector are pretty intense and they can be, they’re very hot, so you’re 
drawing quite a bit of power.” (Physicist #9) and “… I know that the 
XBox that my son used tends to be warm. Warm tends to tell me it’s using 
energy.” (Energy Analyst #8). After reviewing the set of these case- 
specific statements, the generalized heuristic: “Devices that become 
hot to the touch use more energy than similar devices that do not” was 
extracted. 

For each thematically similar cluster of quotes, a heuristic was 
extracted and defined such that it articulated a general form of the ideas 
expressed by the experts. The result was a list of 24 unique heuristics 
(see Table 1 below). 

Table 1 
Heuristics extracted from the choice task, classification of heuristics, their use by experts, and expert assessment of their accuracy. Note that expert heuristics have been 
classified into types, whereas novice heuristics have not (blank in column 2).  

(1) Heuristic (2) Type (3) Number of experts who used the heuristic at least 
once (conditional probability in parenthesis: when the 
heuristic is used, does the expert choose the correct 
answer) 

(4) Expert assessment of 
heuristic accuracy (N = 16) 
(1 = mostly inaccurate, 4 =
mostly accurate) 
Mean (SE) Electrical 

Engineers (n =
10) 

Physicists (n 
= 10) 

Energy 
Analysts (n =
10) 

A greater temperature change requires more energy than a smaller 
temperature change 

Function 3 (50%) 4 (60%) 1 (100%) 3.9 (0.06) 

Insulation helps to reduce the energy use of devices that heat and cool Component 0 (–) 4 (67%) 3 (50%) 3.8 (0.10) 
Devices that become hot to the touch use more energy than similar devices 

that don’t 
External 
cue 

7 (91%) 6 (71%) 4 (100%) 3.8 (0.11) 

Devices that need to be cooled while they are working use a lot of energy Component 2 (100%) 0 (–) 1 (100%) 3.8 (0.11) 
LED lights do not use a lot of energy Component 4 (100%) 2 (100%) 1 (100%) 3.7 (0.20) 
Heating or cooling something takes a lot of energy Function 6 (71%) 6 (100%) 6 (75%) 3.6 (0.13) 
Boiling water and turning it into steam requires a lot of energy Function 5 (50%) 6 (56%) 3 (67%) 3.6 (0.15) 
Appliances that move or heat water use a lot of energy Function 7 (0%) 7 (64%) 3 (67%) 3.4 (0.16) 
Devices with heating elements use a lot of energy Component 5 (50%) 5 (86%) 7 (71%) 3.4 (0.20) 
It takes less energy to heat something with microwaves than with heating 

elements 
Component 5 (100%) 4 (100%) 3 (100%) 3.3 (0.25) 

Thicker power cords are associated with more energy use External 
cue 

2 (33%) 1 (25%) 1 (100%) 3.2 (0.21) 

Producing sound (music) does not require much energy Function 1 (100%) 2 (100%) 1 (100%) 3.1 (0.24) 
Devices that plug into a 240-volt outlet use more energy than devices that 

plug into a standard 120-volt outlet 
External 
cue 

6 (64%) 3 (75%) 4 (100%) 3.1 (0.27) 

Devices with small or focused functions (for example, a desk lamp) need less 
energy than devices that are designed to perform large or broadcast 
functions (for example, an overhead lamp) 

Function 9 (72%) 9 (76%) 4 (50%) 3.1 (0.21) 

Devices that ’keep up the heat’ or movement consume more energy     3.0 (0.22) 
Devices that primarily heat or cool use more energy than devices with a 

primary function involving motion 
Function 4 (0%) 3 (100%) 2 (25%) 3.0 (0.22) 

A device that runs on its own circuit uses a lot of energy Component 1 (100%) 0 (–) 0 (–) 2.9 (0.20) 
Devices that have an initial heating up period consume more energy than 

devices that do not     
2.8 (0.21) 

Devices that either make lights dim/flicker or trip circuits when turned on 
use a lot of energy 

External 
cue 

4 (50%) 1 (0%) 1 (100%) 2.8 (0.26) 

Devices that can run on batteries are low energy consumers Component 2 (100%) 3 (100%) 0 (–) 2.8 (0.28) 
Electronics that produce graphics (images) use more energy than other 

types of electronics 
Function 4 (75%) 0 (–) 4 (100%) 2.8 (0.19) 

The larger the plug a device has, the more energy it will use External 
cue 

1 (100%) 0 (–) 0 (–) 2.7 (0.24) 

Heating takes more energy than cooling Function 0 (–) 1 (100%) 0 (–) 2.6 (0.26) 
Larger devices consume more energy     2.6 (0.16) 
Performing a task quickly tends to take more energy than performing that 

same task more slowly 
Function 5 (43%) 5 (67%) 3 (25%) 2.5 (0.26) 

Quieter devices use less energy than ones that make noise (for example, a 
rattle or hum) when they are in operation 

External 
cue 

2 (100%) 1 (100%) 1 (0%) 2.4 (0.20) 

Devices with a lot of components use more energy     2.4 (0.29) 
Devices that charge other devices use more energy     2.1 (0.17) 
Devices that have an energy label use more energy     2.1 (0.25) 
Devices use less energy in the use phase compared to its use in a 

’preparation phase’     
2.1 (0.21) 

Cooling takes more energy than heating Function 0 (–) 1 (0%) 0 (–) 2.1 (0.21) 
Devices that are related to each other (for example, DVD players and 

televisions) use similar amounts of energy     
1.7 (0.24)  
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2.4. Survey 2: Assessing accuracy of heuristics 

To evaluate the accuracy of the 24 heuristics that were extracted 
from the interviews as well as the heuristics we elicited from the liter
ature, we went back to our 30 experts in February 2020 and asked them 
to assess each of the heuristics. (See Supplementary Methods 2.) In total, 
16 experts responded to the request for further input (response rate =
53%). Using an online survey platform, we provided the experts with a 
set of 32 energy use heuristics: the 24 expert-derived heuristics and 8 
heuristics extracted from a non-expert population [18] that did not 

overlap with the expert heuristics. These non-expert heuristics were 
included to assess how accurate experts find their own heuristics relative 
to those associated with novices, which are documented to already be in 
popular circulation [18]. The experts were asked to evaluate the general 
accuracy of these heuristics on a four-point scale (1 = “mostly inaccu
rate” to 4 = “highly accurate”). 

Note that both surveys are available in the Supplemental Text. This 
research was approved by Indiana University’s Internal Review Board at 
the Office of Research Administration, and informed consent was 
received from all participants. 

Fig. 1. Relationship between actual and estimated energy use. a. The estimated values for the 17 household devices, averaged across the 30 expert participants 
(orange dots), with the average expert slope line given in orange. The solid black line represents the average novice performance on the estimation task for the 
baseline control group in previous work [28]. The dashed line represents a slope of 1, a perfect relationship between estimated and actual energy use. b. The 
relationship between estimated and actual energy use for each of three expert groups: electrical engineers (purple), physicists (blue), and energy analysts (green). The 
novice reference value from the control group in previous work [28] is presented in black. c. Average estimate slopes for the three expert groups and the novice 
reference. d. Average understanding value (correlation between estimated and actual energy use) for the three expert groups and the novice reference. e. Average 
scale use value (ratio of standard deviation values for estimated and actual energy use) for the three expert groups and the novice reference. Points and error bars 
represent means ± standard error of the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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3. Results 

3.1. Estimation task 

Using an energy estimation task [6], we assessed performance by 
analyzing the relationship between the experts’ estimated energy use 
values and the actual energy use of the corresponding devices. Experts 
were asked to estimate the units of energy used by each of 17 devices 
under the condition that these devices were in continuous use for one 
hour. We asked experts for “units of energy” (stating a 100-W light-bulb 
uses 100 units of energy in one hour) rather than wattages to match prior 
research and exercises with novices to allow for comparison. We 
measured each expert participant’s overall energy estimation ability by 
calculating the slope of the best-fit line relating estimated and actual 
energy use on logarithmic scales. 

The overall average estimation slope of our three expert categories 
are shown in Fig. 1a, as is the slope associated with the baseline novice 
group from previous work [28], while the mean slopes for the three 
expert groups are shown in Fig. 1b and 1c. In previous work [28], the 
mean estimation slope for unaided novices was 0.31 (SE 0.02). In 
comparison, the mean values of slopes for electrical engineers was 0.61 
(SE 0.07), for physicists was 0.67 (SE 0.06), and for energy analysts was 
0.62 (SE 0.05). There was no statistically significant difference in the 
mean slope values between the three expert groups (F(2,27) = 0.26, p =
0.77, η2 = 0.019, MSe = 0.037). We note that each expert slope value is 
below 1, meaning that even the experts tend to overestimate the energy 
use of low-use devices and underestimate the energy use of high-use 
devices. That said, the expert slopes are far closer to 1 compared with 
novice slopes, and on average about twice the novice average slopes. 
The mean estimation slope for each expert group was significantly 
higher than the non-expert value (electrical engineers: t (9) = 4.16, p <
0.01, physicists: t(9) = 6.20, p < 0.001; energy analysts: t(9) = 5.92, p <
0.001). 

The estimation slopes can be decomposed into two factors that 
comprise estimation accuracy: the correlation between a participant 
estimate and the true value, which measures understanding of the rela
tive energy use of devices; and the ratio of standard deviations of the 
estimated and actual energy use values, which measures appropriate use 
of a response scale [28]. For both factors, values close to 1 indicate better 
performance. Through this decomposition, estimation slopes can be 
analyzed to better characterize in what ways experts outperformed 
novices in the estimation task. 

Decomposition analysis indicates that experts in each group per
formed better on average than novices in terms of both underlying un
derstanding of energy use and appropriate use of the response scale 
(Fig. 1d and 1e). Novice participants from previous work [28] averaged 
an understanding value of 0.54 (SE 0.02), a value substantially lower 
than the average for electrical engineers (M = 0.82, SE = 0.04), physi
cists (M = 0.87, SE = 0.02), and energy analysts (M = 0.82, SE = 0.04). 
Similarly, novice participants averaged a scale-use value of 0.56 (SE 
0.02), a value that was exceeded by electrical engineers (M = 0.72, SE =
0.06), physicists (M = 0.76, SE 0.06), and energy analysts (M = 0.75, SE 
= 0.04). There are no significant differences in understanding (F(2,27) 
= 0.70, p = 0.50, η2 = 0.050, MSe = 0.012) or scale-use (F(2,27) = 0.12, 
p = 0.88, η2 = 0.0090, MSe = 0.031) values between the three expert 
groups. 

Using a six-point scale (1 = not at all relevant and 6 = highly rele
vant), experts self-assessed the relevance of their expertise to the task of 
estimating the energy use of home appliances. On average, experts 
deemed their expertise relevant to estimating appliance energy use (M 
= 4.6, SE = 0.26). Self-perception of expertise relevance was a weak 
predictor of performance on the energy estimation task (r = 0.24, p =
0.20). The correlation between perceived relevance of expertise and 
understanding of device energy use was very low (r = 0.08, p = 0.69), 
while the correlation of perceived expertise and scale use was somewhat 
higher (r = 0.29, p = 0.12). 

3.2. Choice task 

We devised a set of nine choice tasks in which expert participants 
were asked to determine which of two or three common household 
devices or activities used the least amount of energy when used for the 
same amount of time. Each choice task exercise had a designated correct 
answer, which was the device in the set that had the lowest average 
rated energy use. For example, window air conditioner (~1157 W) was 
the correct choice in the set containing it and an electric oven (~3050 
W). Across the nine choice task exercises, participants selected the 
correct choice 5.6 times on average, with individual scores ranging from 
2 to 9 (perfect score). On average, electrical engineers answered 5.0 (SE 
= 0.49) choice task questions correctly, physicists scored 5.7 (SE = 0.56) 
correct answers, and energy analysts scored 6.0 (SE = 0.30) correct 
answers. There was no statistically significant difference in choice task 
performance between the three expert groups (F(2,27) = 1.22, p = 0.31, 
η2 = 0.083, MSe = 2.15). Similar to the estimation task, the correlation 
between perceived relevance of expertise and performance on the choice 
task was weak (r = 0.10, p = 0.59). 

3.3. Relationship between choice and estimation tasks 

To assess the connection between the choice task score (9 items, 1 for 
correct and 0 for wrong, M = 5.6, SE 0.27) and estimation task slope (M 
= 0.63, SE 0.03), we calculated the correlation between the number of 
correct answers given on the choice task and the slopes of the estimation 
task. Across all 30 experts, the correlation between choice task score and 
estimation slope was quite low (r = 0.06, p = 0.73). There was some 
variation of this correlation between expert groups, as the correlation for 
electrical engineers was negative (r = − 0.18, p = 0.62) while the cor
relations for physicists (r = 0.17, p = 0.60) and energy analysts (r = 0.31, 
p = 0.39) were positive. The negligible overall correlation between 
choice task score and estimation slope is consistent with prior research 
done that showed that the correlation between the choice task (20 items, 
M = 12.1, SE 0.12) and estimation slope (control condition M = 0.31, SE 
0.01) was also weak and positive (r = 0.20, p < 0.001) in the control 
condition [28]. Note that the choice task items were different in the 
previous study, which does not allow for perfect comparison with the 
data presented here. 

3.4. Expert heuristics 

To capture expert heuristics, we analyzed the transcripts derived 
from the expert interviews using the protocol analysis method to extract 
a list of 24 heuristics employed by experts during the choice task (see 
heuristics listed in Table 1). 

The set of heuristics can be divided into three general types based on 
how they relate to thinking about a device’s energy use. The most 
common heuristics type relates to function – the tasks that the device is 
designed to perform. Eleven of the 24 heuristics belonged to the function 
type. Examples of specific device functions highlighted by experts 
include heating and cooling, producing sound, and moving water. 
Typically, when commenting on functions, experts expressed a general 
rule about the absolute or relative energy cost of a function, as in, 
“appliances that move or heat water use a lot of energy” or “producing 
sound does not require much energy.” 

The second most common heuristic type focused on the energy use 
by specific components or systems associated with devices. Seven of the 
heuristics were of this type. Most of the rules of this type assessed what 
could be inferred about the energy use of a device based on the presence 
or absence of specific components within the device, as in, “devices that 
can run on [small] batteries are low energy consumers.” One rule, 
however, related to the household circuit on which a device is powered 
(“A device that runs on its own circuit uses a lot of energy”), which can 
be thought of as an external “component” rather than an internal one. 

The final six heuristics made reference to observable cues that indicate 
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higher levels of energy use. These are cues that do not rely on under
standing the function of a device or on knowing its components, but 
rather require making observations about the physical presence or 
ambient effects of the device (e.g., its size or whether it gets hot to the 
touch when running). The heuristics of this type link the cues to judg
ments about energy use, as in, “the larger the plug a device has, the more 
energy it will use.” 

In the 290 instances of heuristic use documented across the 30 expert 
interviews, a majority (54%) of the heuristics used were function-based 
heuristics. Components (24%) and external cues (22%) heuristics were 
both used less frequently on average than function heuristics. There were 
some differences between the expert groups in terms of what kinds of 
heuristics were used. Relative to other groups, electrical engineers more 
frequently used external cues (29% of all heuristic use versus 17% for 
physicists and 16% for energy analysts). Physicists were more likely to 
reference the function of devices (62% versus 50% for electrical engi
neers and 51% for energy analysts), while energy analysts were more 
likely to employ a heuristic based on the components of the devices in 
the choice task (33% versus 20% for electrical engineers and 22% for 
physicists). The total number of instances of heuristic use by electrical 
engineers (119) and physicists (102) was higher than that of energy 
analysts (69). 

Success with the choice task required selecting the lowest energy- 
using device in a set of two or three devices or activities. Many ex
perts approached this task by eliminating options they viewed as clearly 
using more energy than at least one of the other devices. For example, 
many experts noted that an electric space heater (~1290 W) would use 
more energy than an electric blanket (~197 W) and so were able to 
quickly dismiss the space heater without needing to attend to it closely. 
(In the words of one physicist, “So, I’m going to say the blanket’s less 
than the space heater just because you’re trying to heat up less. Space 
heater is trying to heat up the whole room; the blanket, it’s local heat.”) 

To assess the quality of the 24 expert heuristics, we counted the 
number of choice task responses where the heuristic was used to reach 
the correct answer and divided this sum by the total number of instances 
when the heuristic was used (see the third column in Table 1). The 
resulting conditional probability – the frequency of arriving at the cor
rect answer if the heuristic was used – provides a simple measure of 
heuristic usefulness, with higher values suggesting that a given heuristic 
was useful in reaching a correct judgment in the choice task. The heu
ristics were associated with varying levels of success in choosing the 
correct choice task response. Associated success rates ranged from 0% 
(when used, a correct answer was never given, e.g., “cooling takes more 
energy than heating”) to 100% (when used, a correct answer was always 
given, e.g., “devices that need to be cooled while they are working use a 
lot of energy”), with a median success rate of 71%. Only four heuristics 
had a success rate less than chance on a two-item choice task (i.e., 
was<50%). 

Analyzing how accurate experts are on the choice task is not a 
conclusive measure of heuristic quality. Often, multiple heuristics were 
used to generate a single choice task response and thus we cannot 
directly attribute success or failure in the choice task to a single heuristic 
in these cases. The assessment metric does not tell us about the accuracy 
of heuristics in isolation, a metric that required the second round of data 
collection described below. 

3.5. Follow-up survey 

We asked the same expert participants to evaluate the general ac
curacy of the 24 heuristics that emerged from the interviews. We also 
included eight (of the 24) novice-derived heuristics identified by other 
researchers [18] for evaluation, which were selected so as not to overlap 
with the expert heuristics (see Supplementary Table 2 for the entire list 
of the novice heuristics). Table 1 (Column 4) provides the complete set 
of average expert evaluations of the 32 heuristics. Averaging across the 
16 experts who responded to this second survey, 21 of the expert 

heuristics were deemed to be at least somewhat accurate (i.e., they 
scored above the neutral mark of 2.5), while 3 heuristics had an average 
score on the “inaccurate” end of the scale. In contrast, the majority of 
novice-derived heuristics that we used (5 out of 8) were deemed by our 
panel of experts to be somewhat inaccurate (i.e., their average score was 
below 2.5). Overall, the accuracy evaluation scores for expert heuristics 
were significantly higher than those of the novice heuristics (M = 3.1 
versus M = 2.4, t(30) = 4.32, p < 0.001). 

4. Discussion 

On average, expert-level electrical engineers, physicists, and energy 
analysts all outperformed the novice baseline on an energy estimation 
task. In comparing these performances, we find an affirmative answer to 
our first research question: experts in energy-related fields do have more 
accurate estimates of home energy use than novices. (Notably, and 
consistent with the Dunning-Kruger effect [34], we also find that our 
expert sample tended to undervalue the relevance of their expertise to 
the estimation task, as evidenced by the modest correlation between 
performance and self-rated expertise.) Improving novice understanding 
of energy use, and thereby potentially improving the uptake of impactful 
conservation and efficiency measures, might in part be achieved by 
documenting the heuristics by which experts outperform novices. 

Addressing our second research question, we identify 24 unique 
expert heuristics used to make judgments about energy use by house
hold devices. We find that heuristics related to device function were 
most prominent in terms of both the number of separate heuristics and 
the frequency of heuristic use. This prominence may suggest that sorting 
devices into functional categories (e.g., devices that heat or cool and 
devices that create motion) is a key technique used by experts for 
discriminating between tiers of energy use. Relatedly, temperature 
change emerged as a dominant theme, with nine heuristics across the 
three heuristic types addressing heating and cooling in one form or 
another. Indeed, five of the seven most accurate heuristics (as judged by 
expert participants) relate to heat. Altogether, the responses of our ex
perts suggest that making distinctions between devices that heat or cool 
and those that do not is paramount. Creating motion (as with a tread
mill) and interaction with water (as with a washing machine or water 
heater) were two other frequently employed discriminant categories. 

Concerning our third research question, we find that, with minor 
exceptions, the expert heuristics were judged to be more accurate than a 
comparison set of cultural heuristics used by novices [18]. Accordingly, 
supplementing or replacing novice heuristics with expert heuristics may 
be an effective way of improving public judgment and decision making 
concerning home energy use. Past research has demonstrated that an 
expert heuristic can be used to improve energy-related estimations [28], 
where introducing a single expert heuristic – “large appliances that 
primarily heat or cool use a lot more energy than people think” – 
improved novice performance on both understanding and scale use in 
the energy estimation task. 

It is important to note that 13 of the novice heuristics noted in pre
vious work [18] were similar in content to 6 of the expert heuristics 
identified here, including highly accurate heuristics relating to heating. 
While this overlap in content suggests that novices may already use 
some of the same heuristics as experts, part of what distinguishes nov
ices and experts is the judicious use of heuristics, that is, knowing when 
and how to apply or not apply them. Further, the poor accuracy of 
novice-exclusive heuristics confirms past research suggesting that nov
ices often attend to low-relevance energy-use cues [15–17], which may 
compete with more accurate and useful heuristics for salience. 

The pool of experts who participated in this research belonged to 
three different groups, and this breadth of expertise diversified the data 
we collected (consistent with past calls for diversity in eliciting expert 
judgments [35]). We anticipated that different expert groups would 
bring different vantage points to the issue of home energy use and we 
observe modest differences in how experts approached the tasks of 
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judging home energy use. For example, energy analysts tended to use 
heuristics less than electrical engineers or physicists. Further, each 
group, relative to the others, tended to favor a particular type of heu
ristic (i.e., electrical engineers used observable cues more often, physi
cists used function heuristics more often, and energy analysts used 
component heuristics more often). Despite these differences, each group 
outperformed the previously established novice baseline and there was 
no significant difference between the three expert groups in the per
formance on either the estimation task or the choice task. 

Given that part of expertise is knowing how to separate relevant and 
irrelevant information, the spontaneously generated heuristics may be 
considered an indicator of what information our experts deemed most 
important in judging energy use. Though the experts came from diverse 
backgrounds, there was a general convergence across experts in terms of 
the heuristics that were used. Accordingly, our diverse sample of experts 
involved in this study provides a form of corroboration that the list of 
heuristics contains the critical ideas needed to better assess device en
ergy use. 

The energy estimation task was successful in differentiating between 
experts and novices (as shown in Fig. 1). That said, expert performance 
on the estimation task was only weakly correlated with the other mea
sure of judgment aptitude, the choice task. This weak correlation, while 
puzzling, suggests that the two tasks may require different judgment 
skills or may have been approached in different ways. We hypothesize 
that assessing devices simultaneously during the choice task and in 
much more real-world settings of energy use may have created noise in 
the task leading to lower accuracy. The estimation task required experts 
to judge one device at a time without comparing one device to another – 
this required thinking of energy use in terms of ratio values, explicitly 
deciding for example whether an oven uses two or three times more 
energy than a window air conditioner. In contrast, the choice task called 
on experts to think ordinally (i.e., ordering as first, second, etc.) about 
the energy used by devices, choosing the lowest energy user without 
necessary regard for the magnitude of difference between items in the 
choice set (e.g., a window air conditioner uses some amount less energy 
than an oven). Future research can be designed to more fully investigate 
why there is such a low correlation between the estimation and choice 
tasks, while keeping in mind that these two measures are distinct in 
terms of what judgment processes they may prompt. 

This research was conducted as part of a larger effort to improve 
public understanding of energy use, to aid the uptake of effective effi
ciency and conservation measures at the household level. Previous 
research has measured energy-use perception accuracy by the general 
public [6] and documented the heuristic processes and cues that energy 
novices use to make judgments [15,17,18]. A central contribution of our 
work to this body of literature is the systematic documentation of expert 
energy heuristics. Assuming expert performance on judgment tasks 
represents a realistically achievable upper bound for novice perfor
mance, this research indicates the degree to which novice performance 
could be improved. Further, by cataloging a set of expert energy heu
ristics, our work establishes a set of rules and principles that, when 
transferred to novices, may serve to increase the accuracy of energy 
understanding and possibly choices. 

Further research is required to understand the capacity of the 24 
expert heuristics to improve novice energy judgments and real-world 
decisions. Such research would first need to determine whether these 
expert heuristics are truly helpful decision aids, then to assess the 
combination(s) of heuristics that are most effective in improving judg
ment. We also need to assess whether these heuristics help with real- 
world decision making, as decision aids have done in the domains of 
healthcare [36,37], investing [38], and marketing [39]. While in theory 
access to more high-quality heuristics could lead to greater improve
ments in performance than access to fewer high-quality heuristics, in 
practice performance improvement may plateau at a relatively small 
number of heuristics because a larger set of heuristics may become too 
difficult to remember or apply appropriately [40–42]. Further, the 

heuristics collected in this study vary in terms of accuracy (as assessed 
by experts), breadth (i.e., some can be applied to a wide range of devices 
while others are device-specific), and type (i.e., function, components, 
and observable cues). Future studies can examine the “ecology” of 
heuristics, testing what number and types of heuristics are associated 
with the greatest improvements in energy judgment aptitude. If the 
collected expert heuristics can improve energy-related decision making, 
they may be a useful new component for education programs designed 
to foster reduced energy use [8,18]. 

There are many limitations to our work. First, our sample of experts 
was convenience based, and should not be seen as representative of the 
three expert groups, which would be challenging to come by. Second, 
our sample of examples was heavily skewed towards males, with only 
one expert out of ten in each group identifying as female. While we have 
no reason to believe our results would have been substantially different, 
we nonetheless believe the study would have been improved by greater 
gender parity in our sample. Third, the population of experts targeted in 
this research was skewed towards those with advanced academic cre
dentials; additional insights might have come from including those with 
different markers of expertise, including electricians and technology 
hobbyists. Fourth, the choice task from which the list of heuristics was 
extracted focused on energy use by household devices and was not 
designed to capture other heuristics relating to general energy-use be
haviors, such as where to live or what kind of transportation to use 
which are important domains for reducing energy use. Fifth, while we 
coded specific answers in the choice task as being “correct,” several of 
the devices used for the choice task are associated with a range of 
wattages. (For example, models of microwaves can range between 700 
W and 1400 W.) Accordingly, the assignment of one device as being 
“correct” is contingent on assumptions about what comprehends the 
prototypical or mean version of the device (see Supplementary Methods 
1 for actual energy use values). 
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